Artificial intelligence Applications

AI is relevant to any intellectual task. Modern artificial intelligence techniques are pervasive and are too numerous to list here. Frequently, when a technique reaches mainstream use, it is no longer considered artificial intelligence; this phenomenon is described as the AI effect.

High-profile examples of AI include autonomous vehicles (such as drones and self-driving cars), medical diagnosis, creating art (such as poetry), proving mathematical theorems, playing games (such as Chess or Go), search engines (such as Google search), online assistants (such as Siri), image recognition in photographs, spam filtering, predicting flight delays, prediction of judicial decisions, targeting online advertisements, and energy storage.

With social media sites overtaking TV as a source for news for young people and news organizations increasingly reliant on social media platforms for generating distribution, major publishers now use artificial intelligence (AI) technology to post stories more effectively and generate higher volumes of traffic.

AI can also produce Deepfakes, a content-altering technology. ZDNet reports, "It presents something that did not actually occur,” Though 88% of Americans believe Deepfakes can cause more harm than good, only 47% of them believe they can be targeted. The boom of election year also opens public discourse to threats of videos of falsified politician media.

Healthcare

Main article: Artificial intelligence in healthcare

A patient-side surgical arm of Da Vinci Surgical System

AI in healthcare is often used for classification, whether to automate initial evaluation of a CT scan or EKG or to identify high risk patients for population health. The breadth of applications is rapidly increasing. As an example, AI is being applied to the high cost problem of dosage issues—where findings suggested that AI could save $16 billion. In 2016, a ground breaking study in California found that a mathematical formula developed with the help of AI correctly determined the accurate dose of immunosuppressant drugs to give to organ patients.

X-ray of a hand, with automatic calculation of bone age by computer software

Artificial intelligence is assisting doctors. According to Bloomberg Technology, Microsoft has developed AI to help doctors find the right treatments for cancer. There is a great amount of research and drugs developed relating to cancer. In detail, there are more than 800 medicines and vaccines to treat cancer. This negatively affects the doctors, because there are too many options to choose from, making it more difficult to choose the right drugs for the patients. Microsoft is working on a project to develop a machine called "Hanover"[citation needed]. Its goal is to memorize all the papers necessary to cancer and help predict which combinations of drugs will be most effective for each patient. One project that is being worked on at the moment is fighting myeloid leukemia, a fatal cancer where the treatment has not improved in decades. Another study was reported to have found that artificial intelligence was as good as trained doctors in identifying skin cancers. Another study is using artificial intelligence to try to monitor multiple high-risk patients, and this is done by asking each patient numerous questions based on data acquired from live doctor to patient interactions. One study was done with transfer learning, the machine performed a diagnosis similarly to a well-trained ophthalmologist, and could generate a decision within 30 seconds on whether or not the patient should be referred for treatment, with more than 95% accuracy.

According to CNN, a recent study by surgeons at the Children's National Medical Center in Washington successfully demonstrated surgery with an autonomous robot. The team supervised the robot while it performed soft-tissue surgery, stitching together a pig's bowel during open surgery, and doing so better than a human surgeon, the team claimed. IBM has created its own artificial intelligence computer, the IBM Watson, which has beaten human intelligence (at some levels). Watson has struggled to achieve success and adoption in healthcare.

Automotive

Main article: driverless cars

Advancements in AI have contributed to the growth of the automotive industry through the creation and evolution of self-driving vehicles. As of 2016, there are over 30 companies utilizing AI into the creation of driverless cars. A few companies involved with AI include Tesla, Google, and Apple.

Many components contribute to the functioning of self-driving cars. These vehicles incorporate systems such as braking, lane changing, collision prevention, navigation and mapping. Together, these systems, as well as high performance computers, are integrated into one complex vehicle.

Recent developments in autonomous automobiles have made the innovation of self-driving trucks possible, though they are still in the testing phase. The UK government has passed legislation to begin testing of self-driving truck platoons in 2018. Self-driving truck platoons are a fleet of self-driving trucks following the lead of one non-self-driving truck, so the truck platoons aren't entirely autonomous yet. Meanwhile, the Daimler, a German automobile corporation, is testing the Freightliner Inspiration which is a semi-autonomous truck that will only be used on the highway.

One main factor that influences the ability for a driver-less automobile to function is mapping. In general, the vehicle would be pre-programmed with a map of the area being driven. This map would include data on the approximations of street light and curb heights in order for the vehicle to be aware of its surroundings. However, Google has been working on an algorithm with the purpose of eliminating the need for pre-programmed maps and instead, creating a device that would be able to adjust to a variety of new surroundings.Some self-driving cars are not equipped with steering wheels or brake pedals, so there has also been research focused on creating an algorithm that is capable of maintaining a safe environment for the passengers in the vehicle through awareness of speed and driving conditions.

Another factor that is influencing the ability for a driver-less automobile is the safety of the passenger. To make a driver-less automobile, engineers must program it to handle high-risk situations. These situations could include a head-on collision with pedestrians. The car's main goal should be to make a decision that would avoid hitting the pedestrians and saving the passengers in the car. But there is a possibility the car would need to make a decision that would put someone in danger. In other words, the car would need to decide to save the pedestrians or the passengers. The programming of the car in these situations is crucial to a successful driver-less automobile.

Finance and economics

Financial institutions have long used artificial neural network systems to detect charges or claims outside of the norm, flagging these for human investigation. The use of AI in banking can be traced back to 1987 when Security Pacific National Bank in US set-up a Fraud Prevention Task force to counter the unauthorized use of debit cards.[300] Programs like Kasisto and Moneystream are using AI in financial services.

Banks use artificial intelligence systems today to organize operations, maintain book-keeping, invest in stocks, and manage properties. AI can react to changes overnight or when business is not taking place. In August 2001, robots beat humans in a simulated financial trading competition. AI has also reduced fraud and financial crimes by monitoring behavioral patterns of users for any abnormal changes or anomalies.

AI is also being used by corporations. Whereas AI CEO's are still 30 years away, robotic process automation (RPA) is already being used today in corporate finance. RPA uses artificial intelligence to train and teach software robots to process transactions, monitor compliance and audit processes automatically.

The use of AI machines in the market in applications such as online trading and decision making has changed major economic theories. For example, AI based buying and selling platforms have changed the law of supply and demand in that it is now possible to easily estimate individualized demand and supply curves and thus individualized pricing. Furthermore, AI machines reduce information asymmetry in the market and thus making markets more efficient while reducing the volume of trades[citation needed]. Furthermore, AI in the markets limits the consequences of behavior in the markets again making markets more efficient[citation needed]. Other theories where AI has had impact include in rational choice, rational expectations, game theory, Lewis turning point, portfolio optimization and counterfactual thinking[citation needed].. In August 2019, the AICPA introduced AI training course for accounting professionals.

Government

Main article: Artificial intelligence in government

See also: Mass surveillance in China

Artificial intelligence paired with facial recognition systems may be used for mass surveillance. This is already the case in some parts of China. An artificial intelligence has also competed in the Tama City mayoral elections in 2018.

In 2019, the tech city of Bengaluru in India is set to deploy AI managed traffic signal systems across the 387 traffic signals in the city. This system will involve use of cameras to ascertain traffic density and accordingly calculate the time needed to clear the traffic volume which will determine the signal duration for vehicular traffic across streets.

Jon Bossman